On Higher Syzygies of Ruled Surfaces Ii

نویسنده

  • EUISUNG PARK
چکیده

In this article we we continue the study of property Np of irrational ruled surfaces begun in [12]. Let X be a ruled surface over a curve of genus g ≥ 1 with a minimal section C0 and the numerical invariant e. When X is an elliptic ruled surface with e = −1, there is an elliptic curve E ⊂ X such that E ≡ 2C0 − f . And we prove that if L ∈ PicX is in the numerical class of aC0 + bf and satisfies property Np, then (C, L|C0) and (E, L|E) satisfy property Np and hence a + b ≥ 3 + p and a + 2b ≥ 3 + p. This gives a proof of the relevant part of Gallego-Purnaprajna’ conjecture in [5]. When g ≥ 2 and e ≥ 0 we prove some effective results about property Np. Let L ∈ PicX be a line bundle in the numerical class of aC0 + bf . Our main result is about the relation between higher syzygies of (X, L) and those of (C, LC) where LC is the restriction of L to C0. In particular, we show the followings: (1) If e ≥ g − 2 and b− ae ≥ 3g − 2, then L satisfies property Np if and only if b− ae ≥ 2g +1+ p. (2) When C is a hyperelliptic curve of genus g ≥ 2, L is normally generated if and only if b− ae ≥ 2g+1 and normally presented if and only if b− ae ≥ 2g+2. Also if e ≥ g − 2, then L satisfies property Np if and only if a ≥ 1 and b− ae ≥ 2g +1+ p.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Higher Syzygies of Ruled Surfaces

We study higher syzygies of a ruled surface X over a curve of genus g with the numerical invariant e. Let L ∈ PicX be a line bundle in the numerical class of aC0 + bf . We prove that for 0 ≤ e ≤ g − 2, L satisfies Property Np if a ≥ p + 2 and b − ae ≥ 3g − e + p and for e ≥ g − 1, L satisfies Property Np if a ≥ p + 2 and b − ae ≥ 2g + 1 + p. By using these facts, we obtain Mukai type results. F...

متن کامل

On Syzygies of Ruled Varieties over a Curve

In this article we concern higher syzygies of line bundles on X = PC(E) where E is a vector bundle of rank n+1 over a smooth projective curve C of genus g. Let H be the tautological line bundle of X and projection π : X → C. Our main result is that for a = 1 or n = 1 or n = 2 and a = 2 (i.e. scrolls of arbitrary dimension or ruled surfaces or quadric surface fibrations), aH+π∗B satisfies Proper...

متن کامل

Higher Syzygies of Elliptic Ruled Surfaces

The purpose of this article is to study the minimal free resolution of homogeneous coordinate rings of elliptic ruled surfaces. Let X be an irreducible projective variety and L a very ample line bundle on X , whose complete linear series defines the morphism φL : X −→ P(H (L)) Let S = ⊕∞ m=0 S H(X,L) and R(L) ⊕∞ m=0 H (X,L). Since R(L) is a finitely generated graded module over S, it has a mini...

متن کامل

Characterizations of Slant Ruled Surfaces in the Euclidean 3-space

In this study, we give the relationships between the conical curvatures of ruled surfaces generated by the unit vectors of the ruling, central normal and central tangent of a ruled surface in the Euclidean 3-space E^3. We obtain differential equations characterizing slant ruled surfaces and if the reference ruled surface is a slant ruled surface, we give the conditions for the surfaces generate...

متن کامل

On Higher Syzygies of Ruled Varieties over a Curve

For a vector bundle E of rank n + 1 over a smooth projective curve C of genus g, let X = PC(E) with projection map π : X → C. In this paper we investigate the minimal free resolution of homogeneous coordinate rings of X . We first clarify the relations between higher syzygies of very ample line bundles on X and higher syzygies of Veronese embedding of fibres of π by the same line bundle. More p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004